MODIS land data storage, gridding, and compositing methodology: Level 2 grid

نویسندگان

  • Robert E. Wolfe
  • David P. Roy
  • Eric F. Vermote
چکیده

The methodology used to store a number of the Moderate Resolution Imaging Spectroradiometer (MODIS) land products is described. The approach has several scientific and data processing advantages over conventional approaches used to store remotely sensed data sets and may be applied to any remote-sensing data set in which the observations are geolocated to subpixel accuracy. The methodology will enable new algorithms to be more accurately developed because important information about the intersection between the sensor observations and the output grid cells are preserved. The methodology will satisfy the very different needs of the MODIS land product generation algorithms, allow sophisticated users to develop their own application-specific MODIS land data sets, and enable efficient processing and reprocessing of MODIS land products. A generic MODIS land gridding and compositing algorithm that takes advantage of the data storage structure and enables the exploitation of multiple observations of the surface more fully than conventional approaches is described. The algorithms are illustrated with simulated MODIS data, and the practical considerations of increased data storage are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions

Gridding artifacts between observations and predefined grid cells strongly influence the local spatial properties of MODIS images. The sensor observation in any grid cell is only partially derived from the location of the cell, with the average overlap between observations and their grid cells being less than 30%. This mismatch between grid cells and observations has strong implications for the...

متن کامل

Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories

According to the IPCC GPG (Intergovernmental Panel on Climate Change, Good Practice Guidance), remote sensing methods are especially suitable for independent verification of the national LULUCF (Land Use, Land-Use Change, and Forestry) carbon pool estimates, particularly the aboveground biomass. In the present study, we demonstrate the potential of standwise (forest stand is a homogenous forest...

متن کامل

Remote Sensing-Derived Bathymetry of Lake Poopó

Located within the Altiplano at 3,686 m above sea level, Lake Poopó is remarkably shallow and very sensitive to hydrologic recharge. Progressive drying has been observed in the entire Titicaca-Poopó-Desaguadero-Salar de Coipasa (TPDS) system during the last decade, causing dramatic changes to Lake Poopó’s surface and its regional water supplies. Our research aims to improve understanding of Lak...

متن کامل

Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have c...

متن کامل

CAMP: Community Access MODIS Pipeline

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument’s land and atmosphere data are important to many scientific analyses that study processes at both local and global scales. The Terra and Aqua MODIS satellites acquire data of the entire Earth’s surface every one or two days in 36 spectral bands. MODIS data provide information to complement many of the ground-based observations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 1998